Friday, October 24, 2014

21st Century Maritime Operations Under Cyber-Electromagnetic Opposition: The Finale

For previous installments, see Part 1, Part 2, and Part 3

Candidate Principle #6: Technical Degradation is Temporary, Psychological Effects can be Enduring

It must be appreciated that the greatest damage caused by an adversary’s successful cyber-electromagnetic attack may not be in how it degrades a system or network’s performance, opens the door to kinetic attacks against a force, or even tricks commanders into making operationally or tactically-sub-optimal decisions. All of these are generally temporary effects and can be recoverable with flexible plans, resiliency-embracing doctrine, and crafty tactics. Rather, as renowned naval analyst Norman Friedman has hypothesized, it could very well be the shattering of commanders’ and operators’ trust in their systems and networks that is most destructive. If personnel are not conditioned to anticipate their systems’ and networks’ disruption in combat, an attack’s lasting effect may be a morale-corroding fatalism. Likewise, if they are deceived just once by a manipulated situational picture, and even then not necessarily in a majorly harmful way, they may still hesitate to take needed actions in subsequent engagements out of fear of deception even when none is present. Either of these consequences could result in ceding the tactical if not operational initiative. In a short conflict, this might be catastrophic. Doctrinal collapse might also result, which would be especially debilitating if force structure is designed so tightly around a given doctrine that it severely limits options for creating or adapting operating concepts on the fly.[i] 
Interestingly, similar effects might conceivably occur even when a system’s or network’s electronic protection and information assurance measures cause a cyber-electromagnetic attack to only achieve a relatively minor degree of immediate ‘damage.’ In fact, near-continuous cyber-electromagnetic harassment in the form of noise jamming, incessant yet readily parried cyber penetration attempts, situational picture-manipulation attacks that the target’s operators can quickly discover and reverse, intermittent system crashes or network connectivity interruptions that are quickly recovered from, or even severe disruptions of  non-critical systems and network services may wear a force’s commanders and crews down mentally even if their critical systems and networks remain fully capable. A clever adversary might actually find this psychological degradation more exploitable (and more likely to be available for use at any given time) than technical degradation. Indeed, cyber-electromagnetic warfare’s psychological applications may well be where it finds its greatest utility.

Assessing the Implications

As the Chief of Naval Operations and others have asserted, the cyber and electromagnetic domains have become equally important to the physical domains in waging modern war.[ii] The cyber-electromagnetic fight will extend throughout all phases of major future conflicts, may begin well before open hostilities break out as an adversary attempts to ‘prepare’ the battlespace, and accordingly may be particularly pivotal during a war’s opening phase. Indeed, high-impact anti-network operations with major maritime strategic implications date back as far as the opening moments of the First World War.[iii] Just as a belligerent might not be able to win a war with naval dominance alone but could easily lose without it, so it will be for cyber-electromagnetic dominance. It follows that a naval force’s ability to operate within a contested maritime zone will be highly questionable if it cannot effectively suppress or exploit the adversary’s force-level networks while simultaneously parrying the adversary’s own cyber-electromagnetic attacks. This will even extend to operations featuring stealth platforms, as such assets have long needed direct EW support to achieve maximal effectiveness.[iv] Should the U.S. Navy under-appreciate a potential adversary’s integration of cyber-electromagnetic warfare within combined arms doctrine, in a future conflict it would risk facing attrition rates on par with what it endured in the Solomon Islands from summer 1942 through summer 1943—something that its contemporary force structure simply could not endure.[v]
Assuming the candidate principles we have outlined are validated, they will influence future maritime warfare in at least five general ways. First, they will confirm leading tactical theorist Wayne Hughes’s hypothesis from over a decade ago that the next major maritime fight will be defined by the belligerents’ struggle for scouting superiority.[vi] This will represent a drastic change from the U.S. Navy’s post-Second World War combat experiences, in which the absence of threats to its sea control allowed it to focus on maximizing the efficiency and persistence of power projection ashore. Regardless of whether a tactical action pits two naval battleforces against each other, or one against a land-based force, the victor will likely be the side that is able to achieve high-confidence classification, identification, and targeting against his opponent’s forces first, thereby enabling effective attack.[vii] Cyber-electromagnetic discipline and capabilities will clearly be central to the success of the scouting/anti-scouting phases of any future operation.
Second, the above signifies that a force will need to extend its effective scouting and anti-scouting reach beyond that of its opponent. This is not achieved solely by covering a given area with more sensors than the opponent, or deploying scouts at greater ranges than the opponent. Rather, as suggested earlier, a sensor network’s effectiveness is equally a function of its architecture. This means the availability of difficult-to-intercept communications pathways and backup communications infrastructure will be just as important as raw coverage volume, lest key sensors be cut off from the network or the situational picture they feed be decisively manipulated. This also means the network must employ multiple sensor types. For surveillance, this translates into multi-phenomenology sensors positioned (or covering areas) as far as possible forward within the battlespace, with some using sensing methodologies and platform characteristics that allow them to avoid (or at least delay) counterdetection. For reconnaissance, this requires sensors capable of penetrating the opponent’s force to support the confident confirmation of a given contact’s classification and identity. The U.S. Navy simply cannot afford to waste precious inventories of advanced weapons by falling for deception in a future battle. In this light, the Navy’s proposed Unmanned Carrier Launched Airborne Surveillance and Strike (UCLASS) system could be a critical enabler for effectively employing the proposed Long Range Anti-Ship Missile (LRASM), beyond visual range anti-air missiles, and similar network-enhanced standoff-range maritime weapons. It should not be overlooked that UCLASS, a scouting and attack asset that will be organic to the battleforce, can be designed to support expanded operations on interior lines of networking.
Third, if there is to be a reasonable chance that any degradation will be graceful, cyber-electromagnetic resilience must become a defining attribute of systems’ and networks’ designs. Strong electronic protection and information assurance features are certainly vital, with the latter applying just as much to ‘engineering plant’ systems as to the warfare systems they support. Nevertheless, as no system or network can ever be unexploitable, those central to a force’s tactical capabilities must contain additional design features that allow for quick restoration, graceful degradation, or capability expansion when subjected to withering cyber-electromagnetic attacks. Systems’ avoidance of network-dependency will also help greatly to this end.
Fourth, operations within opposed cyber-electromagnetic environments will demand C2 decentralization, as a higher echelon’s ability to assert direct, secure control over subordinate units under such circumstances will be dubious. Even if possible, this kind of close control will almost certainly be inadvisable if only for force concealment and counter-exploitation considerations. Instead, maritime forces will need to re-embrace ‘command-by-negation’ doctrine, or rather the broad empowerment of lower-level commanders to exercise initiative in accordance with their higher commander’s pre-disseminated intentions, if they are to fight effectively. Relatedly, aggressive experimentation will be needed to find the proper balance between operating on interior and exterior lines of networking when inside a contested zone—and will probably reveal that the bias should be towards the former.
Lastly, forces capable of operating under command-by-negation and in opposed cyber-electromagnetic environments are not developed overnight. Frequent and intensive training under realistic combat conditions will be needed if the requisite force-wide skills are to be developed.[viii] In particular, much as we have traditionally done to cultivate physical damage control readiness, commanders and crews on the deckplates must be regularly conditioned to expect, recognize, and fight-through cyber-electromagnetic attacks. A force’s cyber-electromagnetic resilience will depend in no small way upon its personnel’s technical, tactical, and psychological preparation for operating with critical systems and networks degraded if not compromised, and with situational pictures that have been manipulated. Likewise, a force’s ability to successfully deceive the adversary—not to mention successfully employ countermeasures against the adversary’s weapons—will depend upon the cyber-electromagnetic tactical skills the force’s personnel cultivate through routinized peacetime training. Emission control discipline, decoy placement relative to defended assets, precision evasive maneuvers, precision timing and sequencing of tactics, and the like require frequent practice if commanders and crews are to gain and then maintain just the minimum proficiencies needed to survive in modern maritime battle. The Navy’s next Strategy for Achieving Information Dominance needs to make it clear that cyber-electromagnetic competence must not be isolated to its Information Dominance Corps, and instead must be ingrained within the total force.

While cyber-electromagnetic risks hardly invalidate the use of advanced sensor and networking technologies, they do caution us not to take for granted that our systems and networks will be secure, functional, and reliable when needed.  Our doctrine, contingency operational plans, and tactics must be structured around the assumption each of our warfare systems contain exploitable cyber-electromagnetic vulnerabilities that may prevent us from using them to their fullest—or at all—when most needed. We must not allow ourselves to build and field a force that can only fight effectively when its systems and networks are unhindered and uncompromised.

[i] Norman Friedman. “Trust but Verify.” Naval Institute Proceedings 134, No. 11 (November 2008), 90-91.
[ii] ADM Jonathan Greenert, USN. “Imminent Domain.” Naval Institute Proceedings 138, No. 12 (December 2012), 17.
[iii] LCDR James T. Westwood, USN. “Electronic Warfare and Signals Intelligence at the Outset of World War I.” U.S. National Security Agency, undated, accessed 1/31/14,
[iv] See 1. ADM Jonathan Greenert, USN. “Payloads Over Platforms: Charting a New Course.” Naval Institute Proceedings 138, No. 7 (July 2012), 18-19; 2. Gordon and Trainor, 213-215, 217; 3. Arend G. Westra. “Radar Versus Stealth: Passive Radar and the Future of U.S. Military Power.” Joint Forces Quarterly 55 (October 2009), 136-143.
[v] Thomas G. Mahnken. “China's Anti-Access Strategy in Historical and Theoretical Perspective.” Journal of Strategic Studies 34, No. 3 (June 2011), 310.
[vi] CAPT Wayne Hughes, Jr, USN (Ret). Fleet Tactics and Coastal Combat, 2nd Ed. (Annapolis, MD: Naval Institute Press, 2000), 201-202, 210-212.
[vii] Ibid, 40-44.
[viii] Solomon, “Maritime Deception and Concealment,” 104-106.

Thursday, October 23, 2014

Seventeen Questions on Naval Strategy from a Committed Contrarian

The following contribution comes from Peter Dombrwski, Strategic Research Department at the Naval War College.

As an observer and occasional participant in the naval strategy development process for more than fifteen years, I am puzzled by two trends found in the recent writings of officers, scholars, and analysts interested in naval strategy.   First are the calls for the principal professional schools for naval officers to produce more strategists. Second are the criticisms that the Navy and the Marine Corps do not have a worthy strategy.  Neither criticism seems particularly well suited to resolving underlying problem:  the need for sustaining well-prepared naval forces to protect US national interests in the maritime realm. 

In the interest of furthering both strategic thinking AND ongoing debates about the role of strategists and strategy in the naval services have several questions:

The Number of Naval Strategists

  • Do the naval services actually need more officers who are by nature, education, and experience?
  • Has the Navy used those strategists it has developed over the last several decades well?
    How many billets require naval strategists acting as naval strategists vice strategists more broadly defined?
  • Are the programs at the Naval Postgraduate School and the Naval War College (or other institutions of professional military education) capable of educating officers in ways that will allow them to be successful as strategists?
  • Are the existing specialized programs for developing strategists at the Naval Postgraduate School and the Naval War College scalable?
  • Do we know whether or not these programs, however well intended, actually produce officers with the intellectual skills and background to help the naval services produce better strategy?
  • What if naval strategy is inhibited by bureaucratic, organizational and cultural weaknesses rather than a shortfall of intelligent, educated, and motivated strategist-officers?
  • Will the Navy personnel system ensure that newly minted strategists will be placed in the billets that both require strategists and use their unique background?
  • What happens if these strategists attempt to exercise independent judgments and critical analytics skills in ways that run contrary to Fleet, OPNAV and/or USMC HQ preferences?

The Quality of Existing Naval Strategy

  • Is the ability of the USN and the USMC to fulfill their responsibilities for defending the United States and serving the full range of national interests hindered by bad strategy?
  • If so, how do we know this?
  • Is it essential that the Navy and the Marine Corps (or for that matter the military service services) have separate and distinct strategies from the wide range of national level strategy documents?
  • Have any of the strategic visions produced since the (in)famous Maritime Strategy of the 1980s fit even the most basic definitions of strategy taught in our war colleges?
  • Has the current strategic vision A Cooperative Strategy for the 21st Century led naval programmers and operators to make serious changes in naval acquisition programs, research and development funding, or operation plans?
  • If not, why should we expect that a new, presumably better or more up-to-date strategy to lead to changes in the future?
  • Can the Navy and the Marine Corps overcome institutional and cultural impediments to developing effective strategies that serve both service and national interests?
  • If so, what needs to be done?

For the record, I know many dedicated officers, civil servants and strategists who are working at this very moment to provide useful answers to many of the questions raised above.  Reforms are already in the works.  Yet, if we look back at the last several decades of naval strategizing it is hard to avoid the conclusion that we have seen this all before.

A recent CV-16 article and trouble with interpreting Chinese sources

There was a recent entry on War is boring which later got published on business insider talking about trouble that China is having with engine compartment of CV-16 in recent sea trials. As usual, such articles created a lot of debates on Chinese military forums.

Now, I have actually watched the original CCTV news report that this story is based on. It mentioned that CV-16 has just completed 6 months of maintenance and overhaul at Dalian shipyard before going out to sea again. The report focused on the electrical department of CV-16. Traditionally, it has been customary of Chinese news reports to interview naval personnel, talk about one challenge they had to deal with to give audience an idea of the challenges facing these sailors and then emphasize how their great works saved the ship or mission. These kind of new reports are common and are tools used to foster patriotism in the population. So in this particular praise, this news report was trying to praise the works of the electrical department of CV-16 and give the impression to Chinese population that the Chinese navy is making great progress with its historical mission. In reality, any real life and death scenario would probably be considered confidential and never reported on Chinese news.

Back to the war is boring article, it appears to me the author does not understand the context of such news report. He summarized that China is having a lot of problems with CV-16 and especially with its engines. What we do know is that Chinese navy is at its infancy when it comes to naval aviation and working hard to improve capabilities. We also know that while CV-16 has spent a lot of times at shipyard, it has also spent a lot of times in the ocean. Currently, it has been out on sea trials for 50 days after 6 months at shipyard. Even the most competent navy USN could have engine problems on a long deployment, because complex machines like the naval propulsion systems do breakdown. So it is completely expected that CV-16 would suffer breakdowns on various subsystems while on sea trials or deployment. We know that the problem was identified and fixed quickly without delaying take off/landing training of that day. That tells us the mishap was not major. The original news report was trying to show the head of electrical department is good at identifying problems in his department and working to fix them while at sea. These are all good signs for Chinese navy going forward. That is not a surprise, since these reports are meant as positive propaganda for the population. The irony of this story is that real problems with CV-16 power plant would never get reported on CCTV.

So I think this shows that a lot of experience and cultural knowledge is needed to decipher Chinese military news. Since PLA is still lacking transparency compared to most military around the world and most of their articles are in Chinese, English articles talking about news reports coming out of China often lacks understanding and context of the original article. Depending on the bias of the author, we could get different interpretation which could either sound fear mongering or overly dismissive. Real honest truth about problems facing Chinese navy is not easy to find in the midst of their modernization and building boom. One can decipher problems facing certain programs from delays in construction and commissioning. One can also decipher problems based on the subsystems used on certain ships. And finally, some insiders are candid on Chinese forums about the issues facing Chinese navy. Contrary to popular belief, the Chinese navy does not have unlimited budget. A lot of its decisions are financially related just like they are for USN.

The CNO is Wrong When He Says Seven Month Deployments are "Achievable and Sustainable"

Earlier this year, the CNO released his 2015-2019 Navigation Plan, a document that I wrote about elsewhere.  In that review, I wrote:

"The Navy stands today at 290 ships in its “deployable battle force”.  With these ships, it strains to fill two combat power hubs (Arabian Gulf/Indian Ocean and Western Pacific) and provide mission tailored forces wherever else they are needed.  The plain truth is that even this number is insufficient, and the mechanism of necessity for mitigating this insufficiency remains extending deployment lengths.  Late in the Cold War, the Navy arrived at a six month deployment standard, which it believed was essential to retaining the talent that had “voted with its feet” during the routine eight and nine month deployments of the Vietnam era.  Yet just last week, the CARL VINSON Carrier Strike Group set out from the West Coast on its scheduled ten month deployment.  This is not an aberration.  Eight months has become the new goal, one that is regularly exceeded."

There exists in the brain of a much better mathematician than I a formula to describe the relationship among the following variables (not inclusive):  number of ships, operational availability, requirements for those ships, and deployment length.  Generally speaking, in order to control deployment length--or as in this example, reduce it--one could increase the number of ships in the fleet, get more time deployed per hull (operational availability) by a number of different measures, or reduce requirements.

The six month standard adhered to during the late Cold War and after is now a thing of the past, a victim of too small a fleet spread across too large a number of requirements.  Deployment length has been inching up for over a decade, tracking inversely with the size of the fleet, and the news is replete with stories like the one I cited above, in which the CARL VINSON Strike Group was deploying on a scheduled ten-month deployment.

Which brings us to yesterday's Navy Times story in which the CNO stated during an All Hands Call that lengthy eight-month deployments are no longer sustainable, and seven-month deployments are achievable, pointing to the recently announced Optimized Fleet Response Plan model which has already gotten off to a rough start.

It occurs to me that somewhere between Fleet Forces Command and the CNO's Office, a spreadsheet and PowerPoint tandem exist that depicts a situation in which if all the cosmic tumblers clicked into place, this would be an achievable goal.  Yet such a brief would be the only place in nature that such a plan would work--on paper.  The assumptions that support such a lock-step view of the future are sure to vary, and some of the assumptions made from the beginning are subject to great scrutiny.

The first is the size of the fleet.  It is virtually certain that the Navy's 30 Year Shipbuilding Plan and its goal of a 306 ship Navy underpins the OFRP, yet without a considerable increase in shipbuilding resources above historical allocations, the 306 ship Navy is unaffordable (as discussed in the article of mine linked to above).  Not to put too fine a point on it, but the current 290 ship Navy is unaffordable without an increase in shipbuilding resources.  Put another way, without a change in resources, the fleet will get smaller than it is today, seriously jeopardizing the CNO's goal.

The second is operational availability.  While the Navy is doing visionary things with forward stationing LCS in Singapore, DDG's in Rota, and eventually Amphibs in Australia (each of which increases THOSE HULLS' operational availability) the price to do so includes significant hits to the readiness of non-deployed units as a result of deferred and canceled maintenance.  In doing so, the aggregate fleet operational availability likely remains flat at best and more likely declines.  Put another way, not only is the fleet getting smaller, it is becoming less available, as forward deployed readiness will increasingly come at the cost of non-deployed and surge readiness.

The third assumption worth scrutiny is that the demand for naval forces remains stable.  While I have no insight into whether this assumption was made, it occurs to me to be logical.  Until it isn't anymore.  Our existing force structure inadequately services the existing demand for naval forces, and as that fleet declines in numbers, it will be harder pressed to meet those demands.  Yet China is rising, Iran is flexing, and the Mediterranean is roiling.  It is not difficult to conjure up a situation in which demand for naval forces increases at the very time budgetary pressures create fewer resources to meet it.

Unfortunately, the prospects for success in meeting the CNO's goal are dim, but more is at stake than just an overextended Service Chief.  The Navy is fraying, and it is no longer simply around the edges. It is too small to meet the current demand from its two-hub construct, even as that two hub construct reveals itself to be half-again too small to adequately protect and sustain American interests.  The Navy must AT A MINIMUM be properly resourced to meet its current force structure's needs while it constructs and argues the case to grow to meet easily foreseeable increases in demand in the future.

Bryan McGrath

21st Century Maritime Operations Under Cyber-Electromagnetic Opposition, Part III

For previous installments, see Part 1 and Part 2

Candidate Principle #4: A Network’s Operational Geometry Impacts its Defensibility

Networked warfare is popularly viewed as a fight within cyberspace’s ever-shifting topology. Networks, however, often must use transmission mechanisms beyond physical cables. For field-deployed military forces in particular, data packets must be broadcast as electromagnetic signals through the atmosphere and outer space, or as acoustic signals underwater, in order to connect with a network’s infrastructure. Whereas a belligerent might not be able to directly access or strike this infrastructure for a variety of reasons, intercepting and exploiting a signal as it traverses above or below water is an entirely different matter. The geometry of a transmitted signal’s propagation paths therefore is a critical factor in assessing a network’s defensibility.
The Jominian terms interior and exterior lines of operations respectively refer to whether a force occupies positions within a ‘circle’ such that its combat actions radiate outwards towards the adversary’s forces, or whether it is positioned outside the ‘circle’ such that its actions converge inwards towards the adversary.[i] Although these terms have traditionally applied solely within the physical domains of war, with some license they are also applicable to cyber-electromagnetic warfare. A force might be said to be operating on interior lines of networking if the platforms, remote sensors, data processing services, launched weapons, and communications relay assets comprising its battle networks are positioned solely within the force’s immediate operating area.

While this area may extend from the seabed to earth orbit, and could easily have a surface footprint measuring in the hundreds of thousands of square miles, it would nonetheless be relatively localized within the scheme of the overall combat zone. If the force employs robustly-layered physical defenses, and especially if its networking lines through the air or water feature highly-directional line-of-sight communications systems where possible or LPI transmission techniques where appropriate, the adversary’s task of positioning assets such that they can reliably discover let alone exploit the force’s electromagnetic or acoustic communications pathways becomes quite difficult. The ideal force operating on interior lines of networking avoids use of space-based data relay assets with predictable orbits and instead relies primarily upon agile, unpredictably-located airborne relays.[ii] CEC and tactical C2 systems whose participants exclusively lie within a maneuvering force’s immediate operating area are examples of tools that enable interior lines of networking.
Conversely, a force might be said to be operating on exterior lines of networking if key resources comprising its battle networks are positioned well beyond its immediate operating area.

This can vastly simplify an adversary’s task of positioning cyber-electromagnetic exploitation assets. For example, the lines of communication linking a field-deployed force with distant entities often rely upon fixed or predictably-positioned relay assets with extremely wide surface footprints. Similarly, those that connect the force with rear-echelon entities generally require connections to fixed-location networking infrastructure on land or under the sea. Theater-level C2 systems, national or theater-level sensor systems, intelligence ‘reachback’ support systems, remotely-located data fusion systems, and rear echelon logistical services that directly tap into field-deployed assets’ systems in order to provide remote-monitoring/troubleshooting support are examples of resources available to a force operating on exterior lines of networking.
Clearly, no force can fully foreswear operating on exterior lines of networking in favor of operating solely on interior lines.[iii] A force’s tasks combined with its minimum needs for external support preclude this; some tactical-level tasks such as theater ballistic missile defense depend upon direct inputs from national/theater-level sensors and C2 systems. A force operating on interior lines of networking may also have less ‘battle information’ available to it, not to mention fewer processing resources available for digesting this information, than a force operating on exterior lines of networking.
Nevertheless, any added capabilities provided by operating on exterior lines of networking must be traded off against the increased cyber-electromagnetic risks inherent in doing so. There consequently must be an extremely compelling justification for each individual connection between a force and external resources, especially if a proposed connection touches critical combat system or ‘engineering plant’ systems. Any connections authorized with external resources must be subjected to a continuous, disciplined cyber-electromagnetic risk management process that dictates the allowable circumstances for the connection’s use and the methods that must be implemented to protect against its exploitation. This is not merely a concern about fending off ‘live penetration’ of a network, as an ill-considered connection might alternatively be used as a channel for routing a ‘kill signal’ to a pre-installed ‘logic bomb’ residing deep within some critical system, or for malware to automatically and covertly exfiltrate data to an adversary’s intelligence collectors. An external connection does not even need to be between a critical and a non-critical system to be dangerous; operational security depends greatly upon preventing sensitive information that contains or implies a unit or force’s geolocation, scheme of maneuver, and combat readiness from leaking out via networked logistical support services. Most notably, it must be understood that exterior lines of networking are more likely than interior lines to be disrupted or compromised when most needed while a force is operating under cyber-electromagnetic opposition. The timing and duration of a force’s use of exterior lines of networking accordingly should be strictly minimized, and it might often be more advantageous to pass up the capabilities provided by external connectivity in favor of increasing a force’s chances at avoiding detection or cyber-electromagnetic exploitation.

Candidate Principle #5: Network Degradation in Combat, While Certain, Can be Managed

The four previous candidate principles’ chief significance is that no network, and few sensor or communications systems, will be able to sustain peak operability within an opposed cyber-electromagnetic environment. Impacts may be lessened by employing network-enhanced vice network-dependent system architectures, carefully weighing a force’s connections with (or dependencies upon) external entities, and implementation of doctrinal, tactical, and technical cyber-electromagnetic counter-countermeasures. Network and system degradation will nonetheless be a reality, and there is no analytical justification for assuming peacetime degrees of situational awareness accuracy or force control surety will last long beyond a war’s outbreak.
There is a big difference, though, between degrading and destroying a network. The beauty of a decently-architected network is that lopping off certain key nodes may severely degrade its capabilities, but as long as some nodes survive—and especially if they can combine their individual capabilities constructively via surviving communications pathways as well as backup or ‘workaround’ processes—the network will retain some non-dismissible degree of functionality. Take Iraq’s nationwide integrated air defense system during the first Gulf War, for example. Although its C2 nodes absorbed devastating attacks, it was able to sustain some localized effectiveness in a few areas of the country up through the war’s end. What’s more, U.S. forces could never completely sever this network’s communications pathways; in some cases the Iraqis succeeded in reconstituting damaged nodes.[iv] Similarly, U.S. Department of Defense force interoperability assessments overseen by the Director of Operational Test and Evaluation during Fiscal Year 2013 indicated that operators were frequently able to develop ‘workarounds’ when their information systems and networks experienced disruptions, and that mission accomplishment ultimately did not suffer as a result. A price was paid, though, in “increased operator workloads, increased errors, and slowed mission performance.”[v] 
This illustrates the idea that a system or network can degrade gracefully; that is, retain residual capabilities ‘good enough,’ if only under narrow conditions, to significantly affect an opponent’s operations and tactics. Certain hardware and software design attributes including architectural redundancy, physical and virtual partitioning of critical from non-critical functions (with far stricter scrutiny over supply chains and components performed for the former), and implementation of hardened and aggressively tested ‘safe modes’ systems can fail into to restore a minimum set of critical functions support graceful degradation. The same is true with inclusion of ‘war reserve’ functionality in systems, use of a constantly-shifting network topology, availability of ‘out-of-band’ pathways for communicating mission-critical data, and incorporation of robust jamming identification and suppression/cancellation capabilities. All of these system and network design features can help a force can fight-through cyber-electromagnetic attack. Personnel training (and standards enforcement) with respect to basic cyber-electromagnetic hygiene will also figure immensely in this regard. Rigorous training aimed at developing crews’ abilities to quickly recognize, evaluate, and then recover from attacks (including suspected network-exploitations by adversary intelligence collectors) will accordingly be vital.[vi] All the same, graceful degradation is not an absolute good, as an opponent will assuredly exploit the resultant ‘spottier’ situational awareness or C2 regardless of whether it is protracted or brief.

Tomorrow, we assess the psychological effects of cyber-electromagnetic attacks and then conclude with a look at the candidate principles’ implications for maritime warfare.

[i] “Joint Publication 5-0: Joint Operational Planning.” (Washington, D.C.: Joint Chiefs of Staff, 2011), III-27.
[ii] For an excellent technical discussion on the tradeoffs between electronic protection/communications security on one side and data throughput/system expense on the other, see Cote, 31, 58-59. For a good technical summary of highly-directional line-of sight radiofrequency communications systems, see Tom Schlosser. “Technical Report 1719: Potential for Navy Use of Microwave and Millimeter Line-of-Sight Communications.” (San Diego: Naval Command, Control and Ocean Surveillance Center, RDT&E Division, September 1996), accessed 10/15/14,
[iii] Note the discussion on this issue in “Joint Operational Access Concept, Version 1.0.” (Washington, D.C.: Joint Chiefs of Staff, 17 January 2012), 36-37.
[iv] Michael R. Gordon and LGEN Bernard E. Trainor, USMC (Ret). The Generals’ War: The Inside Story of the Conflict in the Gulf. (Boston: Back Bay Books, 1995), 256–57.
[v] “FY13 Annual Report: Information Assurance (IA) and Interoperability (IOP),” 330, 332-333.
[vi] See 1. Jonathan F. Solomon. “Cyberdeterrence between Nation-States: Plausible Strategy or a Pipe Dream?” Strategic Studies Quarterly 5, No. 1 (Spring 2011), Part II (online version): 21-22, accessed 12/13/13,; 2. “FY12 Annual Report: Information Assurance (IA) and Interoperability (IOP),” 307-311; 3. “FY13 Annual Report: Information Assurance (IA) and Interoperability (IOP),” 330, 332-334.

site stats