Showing posts with label Training. Show all posts
Showing posts with label Training. Show all posts

Thursday, September 10, 2024

A Definitive Article about Information Age Naval Warfare


Earlier this week I discussed two superb articles in the July 2015 Naval Institute Proceedings that examined aspects of cyber and networking resiliency. Today I’m going to talk about the issue’s third article on cyber-electromagnetic warfare: LCDR DeVere Crooks’s and LCDR Mateo Robertaccio’s “The Face of Battle in the Information Age.”
Usually when I read a journal article I mark it up with a pen to highlight key passages or ideas so that I can revisit them later. My doing so to their article was pointless in retrospect, as I ended up highlighting just about every one of their paragraphs.
LCDRs Crooks and Robertaccio touch on virtually every major aspect of operating under cyber-electromagnetic opposition. They correctly argue that cyber-electromagnetic warfare is integral to 21st Century naval warfare, and that we ignore that truism at our peril. They observe that while our pre-deployment training exercises are generally designed to test how well units perform particular tasks, or to test or troubleshoot plans and operating concepts, they don’t generally allow for freeplay experimentation that might uncover new insights about fighting at sea in the information age. “What will tactical-level decision-makers experience, what will they be able to understand about the battlefield around them, and how will that lead them to employ the tactics and equipment they’ve been handed?” ask the authors.
They also highlight the centrality of emissions control to combat survival, with the added observation that the Navy must learn to accept “electromagnetic silence” as its “default posture.” They decry the fact that the Navy rarely is “forced to operate in a silent (or reduced) mode for any sort of extended period or while conducting complex operations.” They allude to the fact that we were able to regularly perform at such a level as recently as a quarter century ago.
They then go into great detail asking questions about whether our training, preferred communications methods, doctrine, tactics, and tactical culture are fully aligned with the realities of fighting under cyber-electromagnetic opposition. When I was on active duty at sea in 2001-2004, I only recall one exercise in which a destroyer I served on practiced performing combat tasks while using only our passive sensor systems—and that was done at the initiative of my destroyer’s Commanding Officer. I don’t remember ever conducting a drill in any of my ships in which our connectivity with external intelligence, surveillance, and reconnaissance assets was deliberately manipulated, degraded, or severed by simulated electronic attacks. Evidently LCDRs Crooks and Robertaccio had similar experiences on their sea tours as well. The issues they raise along these lines in the middle sections of their article are worth the “price of admission” alone.
Their concluding recommendations are most commendable:
  • Begin conducting a “series of extended free play Fleet Problems with minimal scripting and objectives beyond the generation of a large body of direct, honest lessons learned and questions for further investigation.” These Fleet Problems should “allow either side to win or lose without intervention to drive a planned outcome” and should “apply as many of the atmospherics and limitations of an Information Age A2/AD environment as possible, challenging participants to work within the constraints of a battlefield that is contested in all domains.”
  • Use these experiments and other forms of analysis to generate “a set of assumptions about the conditions that are likely to apply in Information Age naval combat (in specified time frames) and mandate that they be applied to all tactics development, fleet training requirements and scenarios, manning plans, and training requirements for individual personnel” as well as “to the development of requirements for future payloads and platforms.”
  • Acknowledge at every level that the cyber and electromagnetic domains will be hotly contested. This means no longer treating the confidentiality, availability, and integrity of information “as a given” or otherwise that it would be “lightly contested.” Tactical-level commanders should treat the need for temporary localized cyber-electromagnetic superiority as just as integral to sea control as is the case with the physical domains of war. As they observe, “this may often largely amount to the monitoring of operations coordinated at higher levels of command, but it is critically relevant even to individual watchstanders.” I would add that qualitative observations of the cyber-electromagnetic situation will likely be just as important as quantitative measurements of that situation.
LCDRs Crooks and Robertaccio have written a definitive thought-piece regarding modern naval warfare under cyber-electromagnetic opposition. I commend it to all naval professionals and enthusiasts alike. It should be considered a point-of-departure reference for the naval debates of our time. 
And my thanks to LCDR Crooks for sharing a follow-on surface force-centric piece here at ID last week. I truly hope his and LCDR Robertaccio’s messages percolate within the fleet. Much in the future depends upon it.
 
The views expressed herein are solely those of the author and are presented in his personal capacity. They do not reflect the official positions of Systems Planning and Analysis, and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency.

Tuesday, September 8, 2024

Thinking About Cyber and Networking Resiliency


I’m well over a month late writing about the July 2015 issue of USNI Proceedings. Simply put, it contains three of the finest pieces about operating under cyber-electromagnetic opposition I’ve read in a long time. I’ll be talking about two of them today and the third one later this week.
First up is LCDR Brian Evans’s and Pratik Joshi’s outstanding article “From Readiness to Resiliency.” Evans and Joshi note that past Navy cyberdefense efforts primarily focused on unit-level compliance with information assurance measures such as firewall configurations, network configuration management and behavior monitoring, physical security protections, and regular ‘hygiene’ training for users. While these kinds of measures continue to be critically important in that they deny adversaries ‘cheap and easy’ attack vectors for exploiting Navy networks and systems, the authors observe that no cyberdefense can hope to keep an intelligent, determined, and adequately resourced adversary out forever. According to the authors, last fall the Navy’s nascent Task Force Cyber Awakening concluded (correctly I might add) that the Navy’s systems, networks, and personnel must able to continue operating effectively, albeit with graceful degradation, in the face of cyberattacks. In other words, they must become resilient.
Evans and Joshi essentially outline a concept for shipboard “cyber damage control.” They describe how the longstanding shipboard material readiness conditions X-RAY, YOKE, and ZEBRA can also be applied to shipboard networks: crews can proactively shut down selected internal and external network connections as tactical circumstances warrant, or they can do so reactively if cyber exploitation is suspected. The authors outline how crews will be able to segment networks and isolate mission-critical systems from less-critical systems, or isolate compromised systems from uncompromised systems, much like damaged compartments can be isolated to prevent the spread of fire, smoke, or flooding. The authors go on to discuss how damage isolation must be followed by repair efforts, and how knowledge of a system’s or network segment’s last known good state can be used to recognize what an attacker has exploited and how in order to aid restoration. It stands to reason that affected systems and network segments might additionally be restorable by crews to a known good state, or at least into a “safe state” that trades gracefully degraded non-critical functionality for sustainment of critical functions.
It’s important to keep in mind, though, that resilience requires more than just technological and procedural measures. When I was an Ensign on USS First Ship in 2001, many crewmembers would tell me of the “Refresher Training” at Guantanamo Bay that Atlantic Fleet ships went through up until budget cutbacks ended the program in the mid-1990s or so. At REFTRA, the assessors would put ships through exacting combat drills in which chaotic attacks, major damage, and grievous casualties were simulated in order to expose crews to the most stress possible short of actual battle. According to some of the senior enlisted I served with, it wasn’t unusual for the assessors to “cripple” a ship’s fighting capacity or “kill off” much of a watchteam or a damage control party to see how the “survivors” reacted. Some ships were supposedly tethered to Guantanamo for weeks on end until the assessors were convinced that the crews had demonstrated adequate combat conditioning—and thus a greater potential for combat resilience. This kind of training intensity must be restored, preferably by shipboard leaders themselves, with the 21st Century addition of exposing their crews to the challenges of fighting through cyberattacks. Perhaps a scenario might involve intensive simulation of system malfunctions as a pierside ship rushes to prepare to sortie during an escalating crisis. Or perhaps it might involve simulated malfunctions at sea as “logic bombs” or an “insider attack” are unleashed. Evans and Joshi allude to the cyber-conditioning angle in the fictional future shipboard training drill they use to close their article. One hopes that Task Force Cyber Awakening is in fact exploring how to develop the psychological aspect of resilience within the fleet.
This leads nicely into the July issue’s other excellent technical article on network resilience, CDR John Dahm’s “Next Exit: Joint Information Environment.” CDR Dahm argues that even if the Defense Department were to successfully consolidate and standardize the services’ information infrastructures within the most hardened of citadels, this Joint Information Environment (JIE) would still only be as combat-effective as the security of the communication pathways connecting that citadel to force in the field. He relates a fictional saga in which a near-peer adversary wins a limited war by severing the U.S. military’s satellite communications pathways as well as the oceanic fiber optic cables connecting Guam and Okinawa to the internet. He correctly notes that the “transmission layer” connecting deployed U.S. forces and theater/national intelligence, surveillance, and reconnaissance assets with the JIE presents the most vulnerable segment of the entire JIE concept. He alludes to the fact that a force that is dependent upon exterior lines of networking is essentially setting itself up for ruin if an adversary lands effective physical, electronic, or cyber attacks against any critical link in the communications chain. He closes by observing that “the communications necessary to support a cloud-based network architecture cannot simply be assumed,” with the implication being that the JIE concept must be expanded to encompass the transmission layer if it is to be successful in a major war.
We know that just as there can never be such a thing as an impregnable “information citadel,” there is no way to make any communications pathway completely secure from disruption, penetration, or exploitation. We can certainly use measures such as highly-directional line-of-sight communications systems and low probability of intercept communications techniques to make it exceedingly difficult for an adversary to detect and exploit our communications pathways. We can also use longstanding measures such as high frequency encoded broadcast as a one-way method of communicating operational orders and critical intelligence from higher-level command echelons to deployed forces. But both reduce the amount of information flowing to those forces to a trickle compared to what they are used to receiving when unopposed, and the latter cuts off the higher echelon commander from knowledge that the information he or she had transmitted has been received, correctly interpreted, and properly implemented. And neither method is unequivocally free from the risk of effective adversary attack. What’s needed, then, is a foundation of resilience built upon a force-wide culture of mission command. That may be outside the JIE concept’s scope, but it will be integral to its success.


The views expressed herein are solely those of the author and are presented in his personal capacity. They do not reflect the official positions of Systems Planning and Analysis, and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency.

Thursday, September 3, 2024

The Use of Simulators and “Synthetic” Environments for Advanced Tactical Training

Jon's note: so my one-week August hiatus turned into a month-long break. Family and work obligations will always take precedence. I managed to write a few weeks worth of new pieces over the last few days, though, and I hope to maintain that pace for the remainder of the summer and early fall.

In late July, USNI News reported that the Navy will build a training center at NAS Fallon that will include simulators for three Aegis cruiser Combat Information Centers (CIC), two E-2D Hawkeyes, and eight F/A-18s. These simulators will be linked such that aircrews and CIC watchstanders will be able to “fight” training scenarios as an integrated force. Additional ship and aircraft simulators will be added over time. Eventually, a datalink will be introduced that enables actual aircraft flying on Fallon’s training ranges to inject themselves into the scenarios being run on the simulators.
A facility like this can never fully replicate the complexities of operating at sea. Simulators are getting better and better at representing the intricacies and variability of real-world radiofrequency and acoustic conditions, but there’s nothing quite like the real thing. Moreover, land-based synthetic training can only partially capture the operational constraints—and crew performance effects—caused by varying weather conditions.
Land-based (and pierside) synthetic training, however, will fill at least two critically important niches in developing our naval forces’ advanced tactical proficiency. First, a crew that isn’t at sea can focus its training attention entirely on the fight. The tactical foundation it gains inside or linked with the simulators is thus already strong when its battleforce begins its underway workups. As less underway time will likely need to be spent on basic skills refreshment, more underway time will be available for advanced scenarios and experimentation. Considering the fact that funding for underway periods will likely continue to be highly constrained in the coming years, and considering the high overseas demand for our inadequately-sized fleet’s ships and aircraft, land-based advanced tactical training will allow the Navy to extract maximum value from each underway opportunity it receives.
Second, this synthetic training will allow crews to operate under tactical conditions and employ tactics that they simply could not do (or for security reasons would not want to do) at sea in peacetime. As I’ve noted previously:
“Some doctrinal elements or tactics that are considered war-critical, as well as tactical situations too complex to generate in forward theaters, can be practiced in home operating areas. In-port synthetic training can also be used for these purposes; it has the added benefits of enabling more frequent and intensive training than may be possible at sea…” (Pg. 106)
The Navy’s Director of Air Warfare, RADM Mike Manazir, alluded to this in the USNI News article on the Fallon facility:
“I can’t train to that highest level in clear air. I’m not allowed to use those modes in clear air. We typically have called those war-reserve modes, and if you go out on a range and you use a war-reserve mode there is a chance that anybody watching could collect information on that war-reserve mode…In this way, in a [virtual-constructive] environment, we can use all of those capabilities…I can give them the worst day of their life that we hope they would never see during deployment…The operation of their missiles and their weapons systems will adequately show what kind of jamming they’re going to see.”
Unit and group-level synthetic training, whether at facilities like Fallon or via pierside training environments in homeport, will allow the Navy to condition its crews for operating under intense and protracted cyber-electromagnetic opposition without safety risks to actual fleet assets. Moreover, it allows those crews to practice, experiment with, and innovate electromagnetic maneuver warfare doctrine and tactics using tools that—if smartly architected—will do much to reduce the risk of disclosure to potential adversaries. That’s a big deal.
Aggressive use of synthetic land-based or pierside tactical training can never completely replace at-sea tactical training. But if synthetic training is designed and executed in ways such that it tightly complements at-sea training, the benefits to fleetwide tactical proficiency and combat conditioning could be immense.

The views expressed herein are solely those of the author and are presented in his personal capacity. They do not reflect the official positions of Systems Planning and Analysis, and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency.

Thursday, July 16, 2024

Potential Missions for Future PLA Unmanned Aerial Vehicles

I recently came across a 2013 Project 2049 Institute monograph detailing PLA efforts to research and develop UAV technologies. Ian Easton’s and Russell Hsiao’s report pieces together the PLA organizations, academic institutions, and industrial activities involved in Chinese UAV work; this is no small open source achievement. More importantly, though, it taps Chinese-language sources to outline concepts from each of the PLA’s services regarding potential future uses for UAVs. Many of these concepts unsurprisingly mirror a number of those under consideration by the U.S. armed services:
  • Long-range autonomous strike
  • “Wingman” duties for manned aircraft
  • Localized communications relay
  • Anti-ship scouting and targeting
  • Ground combat scouting and targeting
  • Wide-area surveillance

They make an additional key observation regarding the possibility that expanded PLA UAV capabilities might incentivize increased Chinese brinksmanship, and possibly the use of force, in a crisis:
“There could be a sense that because human pilot lives are not at stake, operators can push farther than they otherwise might. It is also not clear how nations would react to isolated UAV attacks in times of crisis, especially if these were blamed on mechanical or technical failure, or even on cyber hackers. In the future, PRC decision-makers might feel compelled to order “plausibly deniable” UAV attacks as a means of sending a political signal only to inadvertently wind up escalating tensions.” (Pg 13)
This dovetails closely to some of my own observations on unmanned systems and escalation management. The main difference is that whereas I proposed that an opponent’s unmanned scouts should be considered fair game for attacks during a crisis depending upon the circumstances at hand, it is entirely possible that an opponent might go further and use its unmanned vehicles to conduct limited attacks on traditional targets for coercive effect. The authors don’t argue that the PLA is considering use of UAVs for this kind of purpose, but they are correct that the PLA or any other UAV-operating military might.  The implications for crisis management deserve systematic examination through war-gaming.
Some of their most interesting but in no way surprising observations concern Chinese writings regarding the potential uses of UAVs to support anti-ship attacks. One such use proposed in the source writings is for UAVs to simulate inbound raiders, with the intent being to lure an opponent’s screening aircraft and surface combatants into wasting long-range anti-air missiles against these decoys. Other UAVs might perform electronic attacks against radars and communications systems. All this represents a longstanding and well-understood set of tactics. The requisite technical, tactical, and doctrinal countermeasures are similarly well-understood: multi-phenomenology outer-layer sensors that can classify contacts with high confidence, robust combat training to psychologically condition crews for the possibility of hostile deception, deep defensive ordnance inventories, and embracing tactical flexibility/seizing the tactical initiative. The only question is the defender’s will to invest in these kinds of countermeasures—both materially and culturally.
Easton and Hsiao also note that Chinese writers have proposed that some UAVs might perform direct ‘suicidal’ attacks against radars or warships (and in doing so fully blur the line between UAV and cruise missile). The Chinese sources additionally suggest that UAVs could replace manned aircraft as anti-ship missile-armed raiders, though I would argue this presumes the requisite artificial intelligence technologies for conducting attacks against ‘uncooperative’ targets in an ambiguous and dynamic tactical environment reach maturity.
Lastly, Easton and Hsiao’s sources suggest UAVs could serve as communications relay nodes that support anti-ship attacker—and perhaps in-flight missiles as well. For example, a scout UAV could conceivably provide targeting-quality cues to an over-the-horizon “shooter” via a relay UAV, and then provide periodic targeting data updates to the in-flight missiles thereafter. Or the relay UAV might enable direct communications between “shooters” within a given area. It might even enable direct coordination between in-flight missiles approaching on different axes. The use of highly-directional line-of-sight communications pathways or low probability of intercept transmission techniques would make this a particularly vexing threat. Clearly, naval battleforces will need means of detecting and classifying relay UAVs (not to mention scout UAVs) lurking in their vicinity.  
Easton and Hsiao observe that even though the sources they reviewed for their monograph wrote relatively little about using UAVs in the aforementioned ways for land-attack or ground warfare missions, there are no fundamental factors that prevent them from being extensible beyond the anti-ship mission. They’re absolutely correct on that point, and that’s something that all the U.S. armed services should be thinking about for the future.

--Updated 7/16/15 10:54PM EDT to fix first link in post--

The views expressed herein are solely those of the author and are presented in his personal capacity. They do not reflect the official positions of Systems Planning and Analysis, and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency.

Thursday, July 9, 2024

Revisiting the First Salvo: The Importance of Getting the Narrative Out


The Defense Department did an excellent job embedding a CNN reporter and camera crew aboard the P-8 that challenged Chinese territorial claims in the South China Sea back in May. By doing so, the U.S. established an independent and credible record of the flight’s events that could stand up against Chinese propaganda efforts. More importantly, it created a precedent that the U.S. might embed international media aboard any such flight over contested international waters in the region. The Chinese would have every reason to assume that the reactions of their on-scene forces to these flights might be broadcast to the world within hours, and as such might be encouraged to practice the utmost restraint in those reactions.
Not every claims-challenging U.S. Navy flight or warship transit will have embedded media aboard, though. It might be even harder (or perhaps entirely undesirable from an Operational Security standpoint) to embed media in frontline forces during a precipice-of-war crisis. And the issue is hardly isolated to the Far East; there have been applicable incidents within recent memory in Europe and the Mid-East.
“…defeating a first salvo also means defeating the attacker’s inevitable diplomatic-propaganda campaign. Attackers within range of their homeland cellular networks, or otherwise using satellite uplinks, can quickly post audiovisual content recorded and edited on smartphones or similar devices to websites such as YouTube. From there, propaganda specialists can work to push the material via social networks to critical audiences; it may not take more than a few hours to become ‘viral’ and make the jump to traditional global media outlets. The side that gets seemingly-credible evidence of what happened out first seizes the initiative, perhaps decisively, in the diplomatically and politically-critical battle for the international and domestic public narratives regarding culpability and justification.
In a first salvo’s immediate aftermath, the defender must be able to quickly collect, process, and disseminate unimpeachable audiovisual evidence of its victimization without harming Operational Security. This would be no small feat, especially aboard a warship that is severely damaged or steeling itself for follow-on attacks. Even harder is developing continuously updated, interagency-coordinated, ‘stock’ narrative outlines in advance of any operation that might expose units to direct first salvo risk, not to mention the doctrine and training necessary to swiftly get an initial narrative out into the global media. Contrary to current public affairs practice, in some scenarios this might require evidence processing and public dissemination by lower echelons to be followed thereafter with amplification and context by executive Navy and national leadership. This will be a vitally important area for exploration through war gaming and fleet experiments.”
Jerry Hendrix makes the same point in his commentary on the Su-24 flyby of the USS Ross in the Black Sea on May 30th:
“We're a bit like lawyers," Hendrix said. “Before we make a response we are going to go back, gather the facts, look at the tape and then issue our response. But by the time we do, 24 to 48 hours later, Russia has already established the narrative: The ship was going to penetrate Russia's sovereign waters and the Russian military gloriously forced it to alter course.”
This dovetails with my ongoing crusade in favor of decentralized command and control doctrine, mission command, and command by negation. We have to start training and equipping our crews at the ‘tip of the spear’ so that they can engage in the narrative battle as an incident unfolds or immediately after it occurs. At bare minimum, we must give our crews what they need so that the U.S. and its allies do not lose the “first narrative salvo.”
Although this requires considerable delegation of “media messaging” authority and is accordingly not without risk, it is not fundamentally different than delegating tactical decision-making authority to the lowest practicable level in accordance with a higher-level commander’s intent. If we trust our trained ship, submarine, and aircraft squadron Commanding Officers and crews with the proper use of weapons systems in a tense situation, then we should also be able to train them so we can trust them with wielding smartphones and internet connections as an incident unfolds.
We could develop specially trained public affairs detachments for embarkation in our forces headed into contested waters; they could serve as Commanding Officers’ dedicated specialists much like any other division or workcenter. Or we could develop training regimes to prepare ship and aircraft crews, themselves, to fill these roles. Either way, if we’re serious about winning narrative battles—or at least not losing them when they matter most—we will have to empower our frontline forces. Our broader strategy in a given crisis or conflict may depend greatly on it.

The views expressed herein are solely those of the author and are presented in his personal capacity. They do not reflect the official positions of Systems Planning and Analysis, and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency.